Всемирная сила тяготения создатель. Что такое гравитация — определение и интересные факты. Определение закона всемирного тяготения

31.08.2022
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот

Темы кодификатора ЕГЭ: силы в механике, закон всемирного тяготения, сила тяжести, ускорение свободного падения, вес тела, невесомость, искусственные спутники Земли.

Любые два тела притягиваются друг к другу - по той лишь одной причине, что они имеют массу. Эта сила притяжения называется силой тяготения или гравитационной силой .

Закон всемирного тяготения.

Гравитационное взаимодействие любых двух тел во Вселенной подчиняется достаточно простому закону.

Закон всемирного тяготения. Две материальные точки массами и притягиваются друг к другу с силой, прямо пропорциональной их массам и обратно пропорциональной квадрату расстояния между ними:

(1)

Коэффициент пропорциональности называется гравитационной постоянной . Это фундаментальная константа, и её численное значение было определено на основе эксперимента Генри Кавендиша:

Порядок величины гравитационной постоянной объясняет, почему мы не замечаем взаимного притяжения окружающих нас предметов: гравитационные силы оказываются слишком малыми при небольших массах тел. Мы наблюдаем лишь притяжение предметов к Земле, масса которой примерно кг.

Формула (1) , будучи справедливой для материальных точек, перестаёт быть верной, если размерами тел пренебречь нельзя. Имеются, однако, два важных для практики исключения.

1. Формула (1) справедлива, если тела являются однородными шарами. Тогда - расстояние между их центрами. Сила притяжения направлена вдоль прямой, соединяющей центры шаров.

2. Формула (1) справедлива, если одно из тел - однородный шар, а другое - материальная точка, находящаяся вне шара. Тогда сстояние от точки до центра шара. Сила притяжения направлена вдоль прямой, соединяющей точку с центром шара.

Второй случай особенно важен, так как позволяет применять формулу (1) для силы притяжения тела (например, искусственного спутника) к планете.

Сила тяжести.

Предположим, что тело находится вблизи некоторой планеты. Сила тяжести - это сила гравитационного притяжения, действующая на тело со стороны планеты. В подавляющем большинстве случаев сила тяжести - это сила притяжения к Земле.

Пусть тело массы лежит на поверхности Земли. На тело действует сила тяжести , где - ускорение свободного падения вблизи поверхности Земли. С другой стороны, считая Землю однородным шаром, можно выразить силу тяжести по закону всемирного тяготения:

где - масса Земли, км - радиус Земли. Отсюда получаем формулу для ускорения свободного падения на поверхности Земли:

. (2)

Эта же формула, разумеется, позволяет найти ускорение свободного падения на поверхности любой планеты массы и радиуса .

Если тело находится на высоте над поверхностью планеты, то для силы тяжести получаем:

Здесь - ускорение свободного падения на высоте :

В последнем равенстве мы воспользовались соотношением

которое следует из формулы (2) .

Вес тела. Невесомость.

Рассмотрим тело, находящееся в поле силы тяжести. Предположим, что есть опора или подвес, препятствующие свободному падению тела. Вес тела - это сила, с которой тело действует на опору или подвес. Подчеркнём, что вес приложен не к телу, а к опоре (подвесу).

На рис. 1 изображено тело на опоре. Со стороны Земли на тело действует сила тяжести (в случае однородного тела простой формы сила тяжести приложена в центре симметрии тела). Со стороны опоры на тело действует сила упругости (так называемая реакция опоры). На опору со стороны тела действует сила - вес тела. По третьему закону Ньютона силы и равны по модулю и противоположны по направлению.

Предположим, что тело покоится. Тогда равнодействующая сил, приложенных к телу, равна нулю. Имеем:

С учётом равенства получаем . Стало быть, если тело покоится, то его вес равен по модулю силе тяжести.

Задача. Тело массы вместе с опорой движется с ускорением , направленным вертикально вверх. Найти вес тела.

Решение. Направим ось вертикально вверх (рис. 2 ).

Запишем второй закон Ньютона:

Перейдём к проекциям на ось :

Отсюда . Следовательно, вес тела

Как видим, вес тела больше силы тяжести. Такое состояние называется перегрузкой.

Задача. Тело массы вместе с опорой движется с ускорением , направленным вертикально вниз. Найти вес тела.

Решение. Направим ось вертикально вниз (рис. 3 ).

Схема решения та же. Начинаем со второго закона Ньютона:

Переходим к проекциям на ось :

Отсюда c. Следовательно, вес тела

В данном случае вес тела меньше силы тяжести. При (свободное падение тела с опорой) вес тела обращается в нуль. Это - состояние
невесомости , при котором тело вообще не давит на опору.

Искусственные спутники.

Для того, чтобы искусственный спутник мог совершать орбитальное движение вокруг планеты, ему нужно сообщить определённую скорость. Найдём скорость кругового движения спутника на высоте над поверхностью планеты. Масса планеты , её радиус (рис. 4 )


Рис. 4. Спутник на круговой орбите.

Спутник будет двигаться под действием единственной силы - силы всемирного тяготения, направленной к центру планеты. Туда же направлено и ускорение спутника - центростремительное ускорение

Обозначив через массу спутника, запишем второй закон Ньютона в проекции на ось, направленной к центру планеты: , или

Отсюда получаем выражение для скорости:

Первая космическая скорость - это максимальная скорость кругового движения спутника, отвечающая высоте . Для первой космической скорости имеем

или, с учётом формулы ( 2 ),

Для Земли приближённо имеем.

Определение

Между любыми телами, которые обладают массами, действуют силы, которые притягивают вышеназванные тела друг к другу. Такие силы называют силами взаимного притяжения.

Рассмотрим две материальные точки (рис.1). Они притягиваются с силами прямо пропорциональными произведению масс этих материальных точек и обратно пропорциональными расстоянию между ними. Так, сила тяготения () будет равна:

где материальная точка массы m 2 действует на материальную точку массы m 1 с силой притяжения – радиус – вектор, который проведен из точки 2 в точку 1, модуль этого вектора равен расстоянию между материальными точками (r); G=6,67 10 -11 м 3 кг -1 с -2 (в системе СИ) – гравитационная постоянная (постоянная тяготения).

В соответствии с третьим законом Ньютона сила, с которой материальная точка 2 притягивается к материальной точке 1 () равна:

Тяготение между телами осуществляется посредством гравитационного поля (поля тяготения). Силы тяготения являются потенциальными. Это дает возможность ввести такую энергетическую характеристику гравитационного поля как потенциал, который равен отношению потенциальной энергии материальной точки, находящейся исследуемой точке поля к массе данной точки.

Формула для силы притяжения тел произвольной формы

В двух телах произвольной формы и размера выделим элементарные массы, которые можно считать материальными точками, причем:

где – плотности вещества материальных точек первого и второго тел, dV 1 ,dV 2 - элементарные объемы выделенных материальных точек. В таком случае, сила притяжения (), с которой элемент dm 2 действует на элемент dm 1 , равна:

Следовательно, сила притяжения первого тела вторым может быть найдена по формуле:

где интегрирование необходимо произвести по всему объему первого (V 1) и второго (V 2) тел. Если тела являются однородными, то выражение можно немного преобразовать и получить:

Формула для силы притяжения твердых тел шарообразной формы

Если силы притяжения рассматриваются для двух твердых тел шарообразной формы (или близких к шарам), плотность которых зависит только от расстояний до их центров формула (6) примет вид:

где m 1 ,m 2 – массы шаров, – радиус – вектор, соединяющий центры шаров,

Выражение (7) можно использовать в случае, если одно из тел имеет форму отличную от шарообразной, но его размеры много меньше, чем размеры второго тела - шара. Так, формулой (7) можно пользоваться для вычислений сил притяжения тел к Земле.

Единицы измерения силы притяжения

Основной единицей измерения силы притяжения (как и любой другой силы) в системе СИ является: =H.

В СГС: =дин.

Примеры решения задач

Пример

Задание. Какова сила притяжения двух одинаковых однородных шара масса, которых равна по 1 кг? Расстояние между их центрами равно 1 м.

Решение. Основой для решения задачи служит формула:

Для вычисления модуля силы притяжения формула (1.1) преобразуется к виду:

Проведем вычисления:

Ответ.

Пример

Задание. С какой силой (по модулю) бесконечно длинный и тонкий и прямой стержень притягивает материальную частицу массы m. Частица расположена на расстоянии a от стержня. Линейная плотность массы вещества стержня равна тау

Решение. Сделаем рисунок

Выделим на стержне элементарный участок массы dm.

Всемирное тяготение определение, формула. Гравитационная постоянная.

Что такое всемирное тяготение?

Все тела притягиваются друг к другу. Эти силы называют силами всемирного тяготения.

Другое название сил всемирного тяготения - гравитационные силы.

Примером проявления сил всемирного тяготения является сила тяжести.

Тело падает на Землю под действием силы тяжести. Земля и данное тело притягиваются друг к другу.

Всемирное тяготение определение

Всемирное тяготение определение:

Два тела притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними.

Формула всемирного тяготени

Формула всемирного тяготения:

F = γ(m 1 m 2)/r 2

где
m 1 - масса первого тела;
m 2 - масса второго тела;
r - расстояние между телами.

Гравитационная постоянная

Коэффициент пропорциональности γ называется гравитационная постоянная.

Гравитационная постоянная в СИ равна:

γ = 6,7*10 -11 Н*м 2 /кг 2

Важно. Приведенная выше формула закона всемирного тяготения справедлива только тогда, когда расстояние между телами намного больше размеров самих тел. В иных случаях формула закона всемирного тяготения не может применяться.

Вы уже знаете, что между всеми телами действуют силы притяжения, называемые силами всемирного тяготения .

Их действие проявляется, например, в том, что тела падают на Землю, Луна вращается вокруг Земли, а планеты вращаются вокруг Солнца. Если бы силы тяготения исчезли, Земля улетела бы от Солнца (рис. 14.1).

Закон всемирного тяготения сформулировал во второй половине 17-го века Исаак Ньютон.
Две материальные точки массой m 1 и m 2 находящиеся на расстоянии R, притягиваются с силами, прямо пропорциональными произведению их масс и обратно пропорциональными квадрату расстояния между ними . Модуль каждой силы

Коэффициент пропорциональности G называют гравитационной постоянной . (От латинского «гравитас» - тяжесть.) Измерения показали, что

G = 6,67 * 10 -11 Н * м 2 /кг 2 . (2)

Закон всемирного тяготения раскрывает еще одно важное свойство массы тела: она является мерой не только инертности тела, но и его гравитационных свойств.

1. Чему равны силы притяжения двух материальных точек массой 1 кг каждая, находящихся на расстоянии 1 м друг от друга? Во сколько раз эта сила больше или меньше веса комара, масса которого 2,5 мг?

Столь малое значение гравитационной постоянной объясняет, почему мы не замечаем гравитационного притяжения между окружающими нас предметами.

Силы тяготения заметно проявляют себя только тогда, когда хотя бы одно из взаимодействующих тел имеет огромную массу – например, является звездой или планетой.

3. Как изменится сила притяжения между двумя материальными точками, если расстояние между ними увеличить в 3 раза?

4. Две материальные точки массой m каждая притягиваются с силой F. С какой силой притягиваются материальные точки массой 2m и Зm, находящиеся на таком же расстоянии?

2. Движение планет вокруг Солнца

Расстояние от Солнца до любой планеты во много раз больше размеров Солнца и планеты. Поэтому при рассмотрении движения планет их можно считать материальными точками. Следовательно, сила притяжения планеты к Солнцу

где m – масса планеты, M С – масса Солнца, R – расстояние от Солнца до планеты.

Будем считать, что планета движется вокруг Солнца равномерно по окружности. Тогда скорость движения планеты можно найти, если учесть, что ускорение планеты a = v 2 /R обусловлено действием силы F притяжения Солнца и тем, что согласно второму закону Ньютона F = ma.

5. Докажите, что скорость планеты

чем больше радиус орбиты, тем меньше скорость планеты .

6. Радиус орбиты Сатурна примерно в 9 раз больше радиуса орбиты Земли. Найдите устно, чему примерно равна скорость Сатурна, если Земля движется по своей орбите со скоростью 30 км/с?

За время, равное одному периоду обращения T, планета, двигаясь со скоростью v, проходит путь, равный длине окружности радиуса R.

7. Докажите, что период обращения планеты

Из этой формулы следует, что чем больше радиус орбиты, тем больше период обращения планеты .

9. Докажите, что для всех планет Солнечной системы

Подсказка. Воспользуйтесь формулой (5).
Из формулы (6) следует, что для всех планет Солнечной системы отношение куба радиуса орбиты к квадрату периода обращения одинаково . Эту закономерность (ее называют третьим законом Кеплера) обнаружил немецкий ученый Иоганн Кеплер на основании результатов многолетних наблюдений датского астронома Тихо Браге.

3. Условия применимости формулы для закона всемирного тяготения

Ньютон доказал, что формулу

F = G(m 1 m 2 /R 2)

для силы притяжения двух материальных точек можно применять также:
– для однородных шаров и сфер (R – расстояние между центрами шаров или сфер, рис. 14.2, а);

– для однородного шара (сферы) и материальной точки (R – расстояние от центра шара (сферы) до материальной точки, рис. 14.2, б).

4. Сила тяжести и закон всемирного тяготения

Второе из приведенных выше условий означает, что по формуле (1) можно найти силу притяжения тела любой формы к однородному шару, который намного больше этого тела. Поэтому по формуле (1) можно рассчитать силу притяжения к Земле тела, находящегося на ее поверхности (рис. 14.3, а). Мы получим выражение для силы тяжести:

(Земля не является однородным шаром, но ее можно считать сферически симметричной. Этого достаточно для возможности применения формулы (1).)

10. Докажите, что вблизи поверхности Земли

Где M Зем – масса Земли, R Зем – ее радиус.
Подсказка. Используйте формулу (7) и то, что F т = mg.

Пользуясь формулой (1), можно найти ускорение свободного падения на высоте h над поверхностью Земли (рис. 14.3, б).

11. Докажите, что

12. Чему равно ускорение свободного падения на высоте над поверхностью Земли, равной ее радиусу?

13. Во сколько раз ускорение свободного падения на поверхности Луны меньше, чем на поверхности Земли?
Подсказка. Воспользуйтесь формулой (8), в которой массу и радиус Земли замените на массу и радиус Луны.

14. Радиус звезды белый карлик может быть равен радиусу Земли, а ее масса – равной массе Солнца. Чему равен вес килограммовой гири на поверхности такого «карлика»?

5. Первая космическая скорость

Представим себе, что на очень высокой горе установили огромную пушку и стреляют из нее в горизонтальном направлении (рис. 14.4).

Чем больше начальная скорость снаряда, тем дальше он упадет. Он не упадет вообще, если подобрать его начальную скорость так, чтобы он двигался вокруг Земли по окружности. Летя по круговой орбите, снаряд станет тогда искусственным спутником Земли.

Пусть наш снаряд-спутник движется по низкой околоземной орбите (так называют орбиту, радиус которой можно принять равным радиусу Земли R Зем).
При равномерном движении по окружности спутник движется с центростремительным ускорением a = v2/RЗем, где v – скорость спутника. Это ускорение обусловлено действием силы тяжести. Следовательно, спутник движется с ускорением свободного падения, направленным к центру Земли (рис. 14.4). Поэтому a = g.

15. Докажите, что при движении по низкой околоземной орбите скорость спутника

Подсказка. Воспользуйтесь формулой a = v 2 /r для центростремительного ускорения и тем, что при движении по орбите радиуса R Зем ускорение спутника равно ускорению свободного падения.

Скорость v 1 , которую необходимо сообщить телу, чтобы оно двигалось под действием силы тяжести по круговой орбите вблизи поверхности Земли, называют первой космической скоростью. Она примерно равна 8 км/с.

16. Выразите первую космическую скорость через гравитационную постоянную, массу и радиус Земли.

Подсказка. В формуле, полученной при выполнении предыдущего задания, замените массу и радиус Земли на массу и радиус Луны.

Чтобы тело навсегда покинуло окрестности Земли, ему надо сообщить скорость, равную примерно 11,2 км/с. Ее называют второй космической скоростью.

6. Как измерили гравитационную постоянную

Если считать известными ускорение свободного падения g вблизи поверхности Земли, массу и радиус Земли, то значение гравитационной постоянной G можно легко определить с помощью формулы (7). Проблема, однако, в том, что до конца 18-го века массу Земли измерить не удавалось.

Поэтому, чтобы найти значение гравитационной постоянной G, надо было измерить силу притяжения двух тел известной массы, находящихся на определенном расстоянии друг от друга. В конце 18-го века такой опыт смог поставить английский ученый Генри Кавендиш.

Он подвесил на тонкой упругой нити легкий горизонтальный стержень с небольшими металлическими шарами a и b и по углу поворота нити измерил силы притяжения, действующие на эти шары со стороны больших металлических шаров А и В (рис. 14.5). Малые углы поворота нити ученый измерял по смещению «зайчика» от прикрепленного к нити зеркальца.

Этот опыт Кавендиша образно назвали «взвешиванием Земли», потому что этот опыт впервые позволил измерить массу Земли.

18. Выразите массу Земли через G, g и R Зем.


Дополнительные вопросы и задания

19. Два корабля массой 6000 т каждый притягиваются с силами по 2 мН. Каково расстояние между кораблями?

20. С какой силой Солнце притягивает Землю?

21. С какой силой человек массой 60 кг притягивает Солнце?

22. Чему равно ускорение свободного падения на расстоянии от поверхности Земли, равном ее диаметру?

23. Во сколько раз ускорение Луны, обусловленное притяжением Земли, меньше ускорения свободного падения на поверхности Земли?

24. Ускорение свободного падения на поверхности Марса в 2,65 раз меньше ускорения свободного падения на поверхности Земли. Радиус Марса приближенно равен 3400 км. Во сколько раз масса Марса меньше массы Земли?

25. Чему равен период обращения искусственного спутника Земли на низкой околоземной орбите?

26. Чему равна первая космическая скорость для Марса? Масса Марса 6,4 * 10 23 кг, а радиус 3400 км.

Каждый человек в своей жизни не раз сталкивался с этим понятием, ведь гравитация это основа не только современной физики, но и ряда других смежных наук.

Изучением притяжения тел занимались многие учёные с античных времен, однако главное открытие приписывается Ньютону и описывается как известная каждому история с упавшим на голову фруктом.

Что такое гравитация простыми словами

Гравитация представляет собой притяжение между несколькими предметами во всей Вселенной. Природа явления бывает разной, так как определяется массой каждого из них и протяженностью между, то есть дистанцией.

Теория Ньютона была основана на том, что и на падающий фрукт, и на спутник нашей планеты действует одна и та же сила — притяжение к Земле. А не упал спутник на земное пространство именно из-за своей массы и удалённости.

Гравитационное поле

Гравитационное поле являет собой пространство, в рамках которого происходит взаимодействие тел по законам притяжения.

Эйнштейновская теория относительности описывает поле, как определенное свойство времени и пространства, характерно проявляющееся при появлении физических объектов.

Гравитационная волна

Это определенного рода изменения полей, которые образуются в результате излучения от движущихся объектов. Они отрываются от предмета и распространяются волновым эффектом.

Теории гравитации

Классической теорией является ньютоновская. Однако, она была несовершенна и впоследствии появились альтернативные варианты.

К ним относятся:

  • метрические теории;
  • неметрические;
  • векторные;
  • Ле-Сажа, который впервые описал фазы;
  • квантовая гравитация.

Сегодня существует несколько десятков различных теорий, все они либо дополняют друг друга, либо рассматривают явления с другой стороны.

Стоит отметить: идеального варианта пока не существует, но постоянные разработки открывают больше вариантов ответов в отношении притяжения тел.

Сила гравитационного притяжения

Базовый расчет следующий – сила тяготения пропорциональна умножению массы тела на другую, между которыми она определяется. Эта формула выражена и так: сила обратно пропорциональна дистанции между объектами, возведенными в квадрат.

Гравитационное поле – потенциально, а значит сохраняется кинетическая энергия. Этот факт упрощает решение задач, в которых измеряется сила притяжения.

Гравитация в космосе

Несмотря на заблуждение многих, в космосе есть гравитация. Она ниже, чем на Земле, но все же присутствует.

Что касается космонавтов, которые на первый взгляд летают, то они в действительности находятся в состоянии медленного падения. Визуально, кажется, что их ничего не притягивает, но на практике они испытывают гравитацию.

Сила притяжения зависит от удаленности, но каким бы большим не было расстояние между объектами, они продолжат тянуться друг к другу. Взаимное притяжение никогда не будет равным нулю.

Гравитация в Солнечной системе

В солнечной системе не только Земля обладает гравитацией. Планеты, а также и Солнце, притягивают к себе объекты.

Так как сила определятся массой предмета, то наибольший показатель у Солнца. Например, если у нашей планеты показатель равен единице, то у светила показатель будет почти равен двадцати восьми.

Следующим, после Солнца, по тяжести является Юпитер , поэтому сила притяжения у него в три раза выше, чем у Земли. Наименьший параметр у Плутона.

Для наглядности обозначим так, в теории на Солнце среднестатистический человек весил бы примерно две тонны, а вот на самой маленькой планете нашей системы – всего четыре килограмма.

От чего зависит гравитация планеты

Гравитационная тяга, как уже указывалось выше – это мощь, с которой планета тянет к себе предметы, расположенные на ее поверхности.

Сила притяжения зависит от тяжести объекта, самой планеты и дистанции, находящейся между ними. Если много километров – гравитация низкая, но она все равно удерживает объекты на связи.

Несколько важных и увлекательных аспектов, связанных с гравитацией и ее свойствами, которые стоит объяснить ребенку:

  1. Явление все притягивает, но никогда не отталкивает – это отличает ее от других физических явлений.
  2. Не бывает нулевого показателя. Невозможно смоделировать ситуацию, в которой не действует давление, то есть не работает гравитация.
  3. Земля спадает со средней скоростью 11,2 километра в секунду, достигнув этой скорости можно покинуть притягивающий колодец планеты.
  4. Факт существования гравитационных волн не был доказан научно, это лишь догадка. Если когда-либо они станут видимыми, то человечеству откроются многие загадки космоса, связанные со взаимодействием тел.

В соответствии с теорией базовой относительности такого ученого, как Эйнштейн, гравитация представляет собой искривление базовых параметров существования материального мира, которое представляет собой основу Вселенной.

Гравитация – это взаимное притяжение двух объектов. Сила взаимодействия зависит от тяжести тел и дистанции между ними. Пока не все секреты явления раскрыты, но уже сегодня существует несколько десятков теорий, описывающих понятие и его свойства.

Сложность изучаемых объектов влияет на время исследования. В большинстве случаев просто берется зависимость массы и дистанции.

Последние материалы сайта